sqrt(x^2+5)+sqrt(x^2)+35=50

Simple and best practice solution for sqrt(x^2+5)+sqrt(x^2)+35=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for sqrt(x^2+5)+sqrt(x^2)+35=50 equation:


Simplifying
sqrt(x2 + 5) + sqrt(x2) + 35 = 50

Reorder the terms:
qrst(5 + x2) + sqrt(x2) + 35 = 50
(5 * qrst + x2 * qrst) + sqrt(x2) + 35 = 50
(5qrst + qrstx2) + sqrt(x2) + 35 = 50

Multiply qrst * x2
5qrst + qrstx2 + qrstx2 + 35 = 50

Reorder the terms:
35 + 5qrst + qrstx2 + qrstx2 = 50

Combine like terms: qrstx2 + qrstx2 = 2qrstx2
35 + 5qrst + 2qrstx2 = 50

Solving
35 + 5qrst + 2qrstx2 = 50

Solving for variable 'q'.

Move all terms containing q to the left, all other terms to the right.

Add '-35' to each side of the equation.
35 + 5qrst + -35 + 2qrstx2 = 50 + -35

Reorder the terms:
35 + -35 + 5qrst + 2qrstx2 = 50 + -35

Combine like terms: 35 + -35 = 0
0 + 5qrst + 2qrstx2 = 50 + -35
5qrst + 2qrstx2 = 50 + -35

Combine like terms: 50 + -35 = 15
5qrst + 2qrstx2 = 15

Reorder the terms:
-15 + 5qrst + 2qrstx2 = 15 + -15

Combine like terms: 15 + -15 = 0
-15 + 5qrst + 2qrstx2 = 0

The solution to this equation could not be determined.

See similar equations:

| -0.0009=0.03q | | (3x+2)(x-3)=15x+10 | | n+12-6n=-18 | | -4a^2-32a=0 | | sqrt(9x-32)-sqrt(2(x-3))=sqrt(x+2) | | 6j+7j=3 | | -6.7=-0.137k | | (14b+9)(5b-3)=0 | | 3(2y-8)=12 | | 6(-12)+9-1=2 | | 13-(5m+5)=2+2m-15 | | 37x+.5-(x+0.25)=9(4x-7)+5 | | 7x+8(x+.25)=2(6x-9)-8 | | 56=7e | | 2.3y=0.15(2y-3)-.6 | | 2.3y=0.15(2t-3)-.6 | | 6t^2-2t^2-4=0 | | 5h+3s=11.50 | | 20x-5=17x+4 | | Ax-2b=6c | | Tn=2nsquared-1 | | f(x)=(5/6)x^2-15 | | 5x-10=3-30 | | 10z-6(3z+4)=5[22+(32+4)-22] | | (360-2y)/4 | | 6-(3x+4)=1-2x | | Tn=1-2n | | 93/c | | (360-2y)/3 | | 5/8x=108 | | x=(17-6)/4 | | logy=1 |

Equations solver categories